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Two computational algorithms for location of the point of formation of isolated branches of 
solutions of nonlinear algebraic equations in a solution diagram are proposed. The methods 
are tested on a problem from chemical kinetics. The convergence properties of the methods 
are evaluated and generalization to the problem of location of isolas in nonlinear boundary 
value problems for a set of ordinary differential equations is proposed. 

1. INTRODUCTION 

In a number of nonlinear problems described by a set of algebraic, ordinary, or 
partial differential equations we are usually seeking the solution of the problem in the 
form of a “solution diagram,” i.e., in the form of the dependence of the chosen norm 
or the representative value of the solution on a parameter. Such solution diagrams 
are, for example, constructed in hydrodynamical problems (local velocity or 
temperature as a function of Reynold’s or Rayleigh number), in ecology, reaction-dif- 
fusion problems (concentration of reaction component as a function of the magnitude 
of a transport coefficient), and in a number of other areas of physics and engineering. 
A bifurcation diagram, showing the dependence of bifurcation points on a parameter, 
is also often used to complete the solution diagram 111. 

Isolas in solution diagrams appear as curves of solutions which close on them- 
selves and are not connected to any other branch of solutions. The isolas create 
special problems in construction of solution diagrams. For example, in the techniques 
based on continuation algorithms 12, 3 1 we cannot determine the isolas unless we 
locate at least one point of the isola which could be used as a starting point for the 
application of the algorithm. Until now the results of simulation of the transient 
(nonstationary) problems or a random search away from known families of solutions 
usually pointed to the existence of isolated branches of solutions 14, 51. When such a 
search for isolas is performed, however, the consumption of computer time is usually 
high. 

Methods of qualitative approach to steady-state bifurcation theory, developed 
recently by Golubitsky and Schaeffer 161 ( “singularity theory”), enable one, in 
certain cases, to determine whether universal unfolding of a given problem can 
contain a solution diagram with isolas. Even if we know that an isola should exist in 
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a studied range of parameter values, however, we still have to locate it in the solution 
diagram. In [7] a description of the structure of a class of isolas is given. The isolas 
that shrink to a point as the characteristic parameter of the problem is varied (the 
point is called an isola center) are considered in the paper. The authors derive 
equations characterizing an isola center and construct approximate descriptions of 
isola solutions by a small parameter perturbation expansion in the neighbourhood of 
isola centers. The main problem in the application of the proposed methods is to 
determine the isola center by solving isola center equations. On the basis of the ideas 
of Reiss and coworkers [7], two numerical procedures for direct numerical evaluation 
of the point of formation of the isola (isola center) have been developed. The methods 
will be discussed for a well-known problem of complex chemical reaction in a 
continuously stirred tank reactor, described by a system of three nonlinear algebraic 
equations. Existence of isola solutions in this system is here reported for the first 
time. Generalization to a nonlinear boundary value problem for a set of ordinary 
differential equations will be described in the discussion section. 

2. NUMERICAL ALGORITHMS 

Let us assume that the stationary state of a dynamic system is described by a set 
of nonlinear algebraic equations depending at least on two parameters a and /I 

Jxx, ,..., x,,a,P)=O, i = 1, 2 ,...) n. (1) 

We shall seek such values of the parameter a = a,, where a new isolated curve is 
formed depending on the parameter /3, cf. Fig. 1. 

The dependence of the solution x, on both parameters a and p is shown 
schematically in Fig. 2 (here n = 1). The isolas x,(p) are formed for a > a0 at the 
point P. For a < a0 the isolas disappear. The point P is called the isola center 171. 
The authors of (71 have also considered other types of isolas in their analysis. 

We shall now discuss the necessary conditions satisfied by the point P and suggest 
two procedures for their numerical realization. 

FIG. 1. Characteristic part of the solution diagram x(p): (a) before (u = a,, ~ 6). (b) at (u = a,,). and 
(c) after (0 = a,, + E) formation of isola. 
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FIG. 2. Schematic picture of formation and occurrence of isolas. 

A. Algorithm 1 

In the neighbourhood of the point P the dependence 

a=dxkYP) (2) 

is unique and has an extremum (a representative component xk was chosen). When 

the values xk and /? are fixed, then xr ,..., xk- r, xk+ , ,..., x,, and a can be computed 

from (1) and a, can be evaluated. This will not be necessary, however, for the 

suggested computational algorithm. 

For the extremum of cp to occur at the point P, we shall have 

&p/ax, = 0, acpjap = 0. 

Let us denote 

Jk = 

3, af, af, af, af, -...- - -...~ 
ax, ax& 1 aa a$ + 1 ax, 
af2 - . . . 
ax, 

1 

3s 3 ax,= 

as, afn afn af, afn -... - - -...- 
ax, ax&1 aa axk+, ax, 

af, 
%c 
af2 
a+ 

af, 
3% 

(3) 

(4) 
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and 

r = (rl ,..., rn)T = 
dx dxk-, da dxk+l 
-2 ,..., - 

dx, T 

dx, dx, ‘~‘~‘“” dx, 1 ’ (5) 

Then on differentiating (1) with respect to x, (taking into consideration that a 

depends on xk) we 
function theorem) 

obtain a system of linear algebraic equations (cf. the implicit 

When system (6) is 

Jk . r = -aflax,. 

solved, the first equation in (3) is the same as 

(6) 

Jn+l(x,~xZY”~ x,, a, P) = r&q, x2 ,..., x,, a, P> = 0. (7) f 

To obtain the second equation in (3) we denote 

s = (s, , s2 )...) S,)T = 
(8) 

For fixed xk we obtain a system of linear equations 

J, . s = -aflap. (9) 

The kth component of the vector s is then used for the formulation of the second 
condition in (3) 

fn, *(x1 3***3 x,, a, /3) = sk(x, , x2 ,..., x,, a, p) = 0. (10) 

Note that systems (6) and (9) have the same matrices, hence they can be solved by a 
single pass of the Gauss elimination procedure for two different right-hand sides. 

Altogether, n + 2 nonlinear algebraic equations (1) (7), and (10) for n + 2 
unknowns X=(x, ,..., x,, a, /?)’ result. The residua (left-hand sides) of this system can 
be calculated for chosen values of x, ,..., x,, a,/?. This is sufficient for any method of 
solution of the system of nonlinear equations without computation of derivatives or 
for Newton’s method with the Jacobi matrix computed by means of finite differences. 
An analytical evaluation of the Jacobi matrix requires that for the last two rows we 
have second partial derivatives of A (requiring solution of a number of systems of 
linear algebraic equations). The method would be cumbersome. We can, however, 
combine the analytical evaluation of the first n rows of the Jacobi matrix (we have 
already computed these derivatives) with the use of difference approximations of the 
derivatives in the last two rows, i.e., the partial derivatives of Eqs. (7) and (10). 
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To determine whether isolas exist for a > a,, or for a < a, (here a0 together with p,, 
and xy ,..., x”, result from the solution of the above system of n + 2 nonlinear 
equations) we have three possibilities: 

(1) Use some trial and error technique; here we choose the point xy ,..., x”, for 
j3 = /3, and a = a, i E (or a slightly perturbed point) and solve equations (1) e.g., by 
Newton’s method. The results indicate the direction of formation of isolas. 

(2) Evaluate the second derivatives a*e~/axi, a’o/@’ and 8*fp/ax,@ and use 
Sylvester conditions to differentiate between maxima and minima of o (for deter- 
mination of the direction of the formation of the isola). 

(3) Use perturbation techniques as proposed in [7]. 

B. Algorithm 2 

We have a limit point at the point of formation of an isola for fixed /3 = & for x(a) 
(cf. point P in Fig. 2). A necessary condition for the existence of a limit point is 
11, 8,91, 

fit, ,(x, 3 x2 3...’ x,, a, /?) = det J(x, ,..., x,, a, p) = 0, (11) 

where J = ( ~I/c?x,} is the Jacobi matrix of system (1) with respect to the variables 
x, )..., x,. We shall now choose an index k, 1 < k ,< n, and fix the value of the coor- 
dinate xk at the point of isola formation (in Fig. 2, k = 1 at the point P), hence 
xk = xk,,. Then the dependence of (x1, x2 ,..., xk-~, , xk+, ,..., x,, p) on a leads to a limit 
point at the point P determined by (cf. above) 

f”, *@I 5***9 x,, a, ,8) = det j,(x, ,..., x,, a, /I) = 0, (12) 

where 

J, = 
8f2 ~ . . . 

3x1 

af, ain afn af, afn -...- ~ - .,. ~ 
ax, axk-, aP aXk+, ax, 

(13) 

We have obtained a system of n + 2 nonlinear equations (1 ), (1 1 ), and (12) for 
n + 2 unknowns x ,,..., xnr a, /I. We use Newton’s method, as in Algorithm 1, 
combined with methods for evaluation of the Jacobi matrix (the first n rows are 
evaluated analytically and the last two rows, i.e., the partial derivatives of Eqs. (11) 
and (12), are obtained by means of a difference approximation). The testing of the 
direction of formation of isolas is also similar to the procedure described for 
Algorithm 1. 
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3. EXAMPLE 

The two algorithms described above were applied to a system of three nonlinear 
equations describing stationary states of flow through a continuously stirred tank 
reactor, where reactions of catalytic oxidation of malonic acid by acidic bromate 
occur (the well-known oscillatory Belousov-Zhabotinski reaction [IO]). The mass 
balance equations are in the form 

x2 

G , 

(px, - x,x* + x, - X:)/E - px, = 0, 

(&-X,X*+fX~):E~+p(~-x,)=o. 
x,-x*-pxj=o. 

d- 20 
- d - 280 

- -._ OL- 800 
..-. - a - 2000 

._ . ..-. - .. - - _ ,._ 
/. 

/’ /’ _.-.- -. _.-.- -. ------_ ------_ 
/’ /’ ,’ ,’ 

/ /’ / /’ 
/ / / / 

/ / /--- /--- / / / / / / / / 
/ / / /I / /I 

/ / / / 

(14) 

FIG. 3. Dependence x,(B), model (14) for various a. The point P denotes isola formation for 
a = 3508. 



TABLE I 

The Course of Newton’s Iteration Process for Algorithm 1. 

Iteration XI X2 X3 a B 

0 0.200 1.000 0.100 0.300 1.000 
1 0.25 1 0.797 0.125 2022 1.018 
2 0.25 1 0.748 0.125 3496 1.010 
3 0.249 0.750 0.125 3508 0.997 
4 0.249 0.750 0.125 3508 0.997 

0 2.000 2.000 2.000 2.000 2.000 
1 0.767 3.584 1.772 54260 0.726 
2 0.443 3.650 1.143 43800 0.509 
3 0.276 3.437 0.698 29715 0.389 
4 0.186 3.053 0.4 11 18715 0.323 
5 0.148 2.43 1 0.250 11154 0.321 
6 0.193 1.117 0.171 6039 0.55 1 
7 0.221 0.732 0.116 3180 0.790 
8 0.246 0.758 0.127 3554 0.953 
9 0.249 0.750 0.125 3509 0.993 

10 0.249 0.750 0.125 3508 0.997 

Note. iu = 8.4 x 10m6,f= 2, E = 6.6667 x 10m4, and E’ = 1.7778 X 10- ‘. 

TABLE II 

The Course of Newton’s Iteration Process for Algorithm 2. 

Iteration XI a P 

0 0.200 1 .ooo 0.100 0.300 1.000 
1 0.156 0.889 0.106 1562 0.444 
2 0.216 0.789 0.129 3737 0.704 
3 0.257 0.741 0.127 3569 1.019 
4 0.250 0.750 0.125 3511 0.998 
5 0.249 0.750 0.125 3508 0.997 
6 0.249 0.750 0.125 3508 0.997 

0 

2 
3 
4 
5 
6 
7 
8 
9 

10 
11 

2.000 2.000 2.000 2.000 2.000 
1.197 1.006 0.660 -7117 1.609 

0.758 0.683 0.407 -3152 1.146 
0.485 0.674 0.29 1 709.6 0.806 
0.314 0.742 0.205 2916 0.6 10 

0.220 0.797 0.144 3611 0.549 
0.217 0.783 0.120 3696 0.769 
0.223 0.776 0.121 3671 0.807 
0.232 0.767 0.123 3626 0.866 
0.243 0.757 0.124 3563 0.940 
0.250 0.750 0.125 3506 0.999 
0.249 0.750 0.125 3508 0.997 

Note. p = 8.4 X 10m6,f= 2, E = 6.6667 x 10m4, and E’ = 1.7778 X lo-‘. 
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Here, x, , x2, and x3 are dimensionless concentrations of [ HBrO; ] radical, [ Br 1, and 
[Ce4’ ] ions, respectively (in Tyson’s work [lo] they are denoted x, y, z); ,D, f, E, and 
E’ are given model parameters, p is the dimensionless feed rate, and (r is the dimen- 
sionless concentration of bromide ions in the feed (p and 01 are denoted k and y” in 

1101). 
Results obtained by using Newton’s method for the solution of the system of five 

nonlinear equations (I), (7) and (10) (Algorithm 1) for example (14) are shown in 
Table I. The Jacobi matrix for Newton’s method was evaluated by a combination of 
techniques, i.e., the first three rows were calculated analytically and the last two rows 
by means of a difference approximation. The convergence of the method is good. The 
dependence of the variable x, on the parameter ,fI for different values of the parameter 
a is shown in Fig. 3, where the point P is the point of isola formation for a = 3508. 

The dependence of the solution on the parameter /I was computed by using general 
continuation routine 131. The starting points for the continuation were chosen 
randomly. The starting estimates for the continuation in the neighbourhood of isola 
centers can also be based on perturbation solutions as described in 171. This could 

10000 

FIG. 4. Bifurcation diagram for system (14) in a parametric plane “/3 - a.” 
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bring significant computer time savings, particularly in the problems of higher dimen- 
sionality. 

The examples of the use of Newton’s method for the solution of Eqs. (1 ), (11) and 
(12) (Algorithm 2) are shown in Table II; the last two rows of the Jacobi matrix were 
again evaluated by means of a difference approximation. The convergence was again 
good. If the algorithms are compared, we can see that global convergence properties 
are somewhat better for Algorithm 1. An iteration according to both algorithms was 
used for a number of initial estimates. A comparison of the results obtained is 
summarized in Table III, confirming the effectiveness of both algorithms. When we 
solve the equations for necessary conditions we obtain not only the point of isola 
formation, but also the point of a saddle type, denoted Q in Fig. 3. The corresponding 
bifurcation diagram given in Fig. 4 clarifies the picture. Here the loci of limit points 
of x(/3) and x(a) are given depending on the values of the parameters a and j3, respec- 
tively. 

The points P and Q are also indicated, and correspond to the values of the 
parameter p where a minimum or a maximum is located. At the point P the limit 
points of x(p) are approaching each other and for a < aP multiple solutions exist 

TABLE III 

Comparison of Efficiency of the Algorithms 

Initial guess 

XI -x2 X3 a 

0.2 1 0.1 0.3 
0.2 0.8 0.1 4000 
0.2 0.2 0.2 2 
0.3 2 0.5 0.5 
0.1 I 0.1 0.3 
0.2 2 0.1 0.3 
0.2 3 0.1 0.3 
0.5 0.5 0.25 5 
0.1 1 1 1 
0.1 0.1 0.1 0. I 
1 1 1 I 
2 2 2 2 
3 3 3 3 

10 10 10 10 
100 100 100 100 

1000 1000 1000 1000 
10000 10000 10000 10000 

P Algorithm I 

I P-3 
I P-5 
0.2 Q-13 
1 P-4 
I div. 
1 P-4 
1 P-4 
0.5 Q-13 
1 div. 
0.1 Q-11 
I Q-14 
2 P-IO 
3 div. 

10 div. 
100 div. 

1000 div. 
10000 div. 

Algorithm 2 

P-5 
div. 
div. 
div. 

Q-12 
Q-10 
div. 
P-5 
div. 
div. 

P-7 
P-l 1 
div. 
P-l I 
P-16 
P-2 I 
div. 

Note. Indicated in the last two columns is the number of iterations sufficient to reach an accuracy of 
three valid digits for all five components; div. denotes slow convergence or divergence; P or Q denotes 
that the iteration process reached the point P (0.249, 0.750, 0.125, 3508, 0.997) or Q (0.00413, 0.998. 
0.00410, 229, 0.00836), respectively (cf. Figs. 3 and 4). 
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(isolas cease to exist for a + (rp-). On the other hand, at the point Q the limit points 
with decreasing a separate and for fit multiplicities do not exist for the dependence 
x(p) (the point Q corresponds to the point of contact of the limit points of the two 
different branches). Observe that the point of isola formation corresponds to the point 
of extremum on the convex part of the loci of the limit points (in their dependence 
on@, taken from the point of view of a set of multiplicities (multiple solutions 

of(l)). 

4. DISCUSSION 

The algorithms described above can be effectively used in situations where we have 
found in some other way that isolas exist, or should exist, on the solution diagram. 
One of the possibilities already mentioned is a trial and error technique applied to the 
corresponding nonstationary problem. Another is to use singularity theory. 
Golubitsky and Schaeffer [6] have published a partial classification of bifurcation 
problems with one state variable x. In their classification an isola appears in the case 
where the normal form is x2 +/3’, with a universal unfolding x2 +/I’ + a 
(codimension 1 problem). Hence, if we can transform the given nonlinear algebraic 
problem into the above normal form and the corresponding universal unfolding will 
include that for an isola, we can start to locate the point of isola formation by the 
above techniques. 

The procedure of location of isola centers described for algebraic equations can 
also be used for location of isola centers in solution diagrams of nonlinear boundary 
value problems (NBVP) for systems of ordinary differential equations. Let us 
describe such a procedure based on the transformation of the boundary value 
problem into an initial value problem by means of the shooting method. 

Let us have a NBVP in the form (’ = d/dr) 

.,Vl = gi(Yl3.“3 Ym? a, PI3 i = 1, 2,. . ., m, (15) 

with the two-point boundary conditions 

Y,(O) =YiO, i = 1, 2 ,..., m - n, (16) 

Yj,(l)=Yji13 i= I,2 ,..., n, jiE [l,m]. (17) 

Boundary conditions (16) and (17) were chosen for simplicity; generalizations will be 
evident. 

After choosing n missing initial conditions at t = 0, 

Yi+m-n (0) = Xi, i = 1, 2 ,..., n, (18) 

the initial problem of Eqs. (15), (16) and (18) can be integrated from t = 0 to t = 1 
and n residua 

.fxx 1 T-..? x, 2 a5 P> = Yji( l) - Yj, I = 09 i = l,..., n, (19) 
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are obtained (the value of the solution yji(l) is evidently dependent on the choice of 
x, ,-**, x,, a, p). The problem is thus transformed into form (1) and the procedures 
described in Section 2 can be used. The elements of Jacobi matrices (4) and (13) are 
obtained either by means of the introduction of variational differential equations for 
variables ~Yy,/ax~, 13y,/&, and 8y,/@ or by using difference formulas. In the first case, 
a total of m(n + 3) differential equations have to be integrated in one iteration; in the 
second case we have to integrate m differential equations (15) (n + 3) times. 

The second possibility for the location of isola centers for NBVP is to apply the 
above described algorithms directly to difference approximations of Eqs. (15~( 17). 
The dimension of problem (1) will be high. In cases where the shooting method will 
fail, however, it seems that it will be easier to use this procedure than to construct 
multiple shooting procedures. 
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